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Task: We want to learn a semantic latent space z of actions « that an agent can execute, as well
as what will be the consequences of these actions In our observation space.

Setup: We do not have access to actions, but can observe frajectories executed by the agent.
Specifically, we use a dataset of videos of the agent.

Assumptions (in this work): The environment dynamics in our observation space are fully detfermined
by the executed actions and history of olbservations.

ldea: Use variational autoencoders 1o model the distribution of possible actions.

Application: We use the model for Model Predictive Control, similarly fo [6]. However, we need less
active observations to frain, and can potentially leverage e.g. Infernet videos for fraining.

Background

Stochastic video prediction
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Balancing the two losses with a p term allows o |
recover a minimal representation [4]. :
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Variational Information Bottleneck (VIB)

The Information Botfleneck [3] objective for a representation Z with input X and output Y:

max [(Z,Y) s.t. I(X,Z) < I.

Variational Information Bottleneck [4] optimizes the above using the Lagrangian:

4:p(z|x)10g Q(y‘Z) o 5KL[p(Z‘$)Hp(Z)]

Applied to the recurrent latent variable defined above, we recover the B-VAE [1,2,5] tormulation:
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Passive (Unsupervised) Learning

Input Videos (no actions)
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Video Predictions

We learn a representation of acti

stochastic video prediction and
composability objective.

Problem (left): The learned representatior
z does not represent the action consistent
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Approach

Active Learning (Calibration)

Input Videos (with actlons Ut )
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With few action annotations, we calibrate our

representation to the robot at hand to perform

prediction or control.

Composability Training
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z 1S enfangled with the immediate state z, meaning that

ly across trajectories.
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Proposed method (right): Enforce the property that individual z's can be efficiently composed.

Learned Disentaglement
Trajectory transplantation

a) CLASP (Ours)
PCA of the latent samples z colored by the value of the true action .

Action-conditioned prediction

N

~

~

~

rad

0.6
0.5
0.4
0.3
0.2
0.1

_9

0

2

0.0

b) Denton & Fergus (2018)

Reacher BAIR
Method Error |[deg| Error [px]
Random 20.0 = 21.5 -
Denton & Fergus 22.6 £17.7 3.6+4.0
CLASP (Ours) 29+ 2.1 3.0+2.1
Supervised 2.6 1.8 20+1.3

Action-Conditioned Video Prediction Planning in learned action space

Input Image & Action Sequence

Start & Target Image
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We use the action annotations o learn o
bijection between z and u, which we can use for

action-conditioned prediction

We can perform planning in the learned action
space z, and decode the plan info grounded

actions v o execute them.

Learning from Different Agents

Planning Trajectory transplantation
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Results summary

Even though the problem is underconstrained, an agent’s action space can be learned from visual
observations without explicit supervision by using suitable inductive biases.

Minimality and composability of action representations provide strong inductive biases for this fask.

The key challenge is to learn a representation that is disentangled from the static scene content,
such as the robot’'s iImmediate state, visual characteristics, and background.

The system can be trained with passive observations, e.g., from videos collected online.

The disentanglement allows the representation to be used for actfion-conditioned prediction and
planning after a calibration phase with a small number of action-labeled observations.
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